苏州优质树脂砂轮加工
发布时间:2024-12-13 00:41:35苏州优质树脂砂轮加工
自动成型技术的发展:树脂薄片砂轮的成型技术一直是影响磨具企业生产成本和生产效率的重要因素,树脂薄片砂轮如果能够采用机械自动化的大批量生产,将能够极大降低生产成本,提升生产效率。想要规模化生产,比较理想的是自动压制成型。早在上世纪八十年代,磨具行业内就进行过这方面的探索和尝试,从国外引进了一台自动成型压机。该设备设计紧凑,和普通的压机区别只在多了一个饲料系统。它的工作原理是:将混合料放入上方的料斗内,通过震动,落在传送带上,用刮板刮平,调节传送速度,将料送至称量斗内,称量准确后投料入模腔。从设计原理上看,应该能够快捷有效,但这里有个致命缺陷,以至于后来无论怎么调整,总是达不到设计的理想水平。因为薄片砂轮投料不象冶炼刚玉、碳化硅,原料的误差不能太大,通过传送带送料,要想称量准确不是一件容易的事,反复调整,不但提高不了效率,反而浪费了大量的时间。现在采用的是折中办法,绕开比较棘手的饲料系统,人工饲料,用多工位压机,劳动强度降低,生产效率也能保证。
苏州优质树脂砂轮加工
化学性能的相关说明:树脂砂轮随着电子、机械、光学等行业的快速发展,对于单晶硅、不锈钢、硬质合金等硬脆材料的加工表面质量及加工效率提出了越来越高的要求。这些硬脆材料一般均由研、磨、抛加工完成,其中可实现高效率、超光滑表面加工的ELID超精密磨削方法受到了科研与企业界的广泛重视。目前ELID技术主要采用金属结合剂砂轮,但这种砂轮存在制作困难,成本昂贵,并且对于功能材料的洁净表面加工容易造成污染等诸多问题。针对这些问题,提出一种以炭、树脂为结合剂的陶瓷砂轮,这种砂轮具有制作简单、成本低,并且可以实现无污染、高效、高精度的镜面磨削加工。探讨树脂砂轮的ELID磨削加工机理、以及针对陶瓷砂轮的ELID磨削,研究新型的ELID磨削液,使磨削加工达到较优的效果是本文研究的重点。的电化学性能,可以得出结论:陶瓷砂轮具有良好的导电性能,并且通过电解作用后在表面产生一层钝化膜,为ELID技术的实现打下基础。磨削液作为磨削加工中的关键因素,从其防锈性能、冷却性能、润滑性能以及电解性能各方面综合分析,得出一种配方配比,能够很好的应用到ELID磨削加工中。磨削液的导电性在很大程度上决定着钝化膜的形成,采用BP神经网络和MATLAB联合仿真,建立磨削液导电率的预测模型,可以实现不同的磨削条件。采用研制的新型ELID磨削液进行了对不锈钢的磨削实验,通过对比实验结果,分别得到对于不锈钢粗加工和精加工的加工工艺,使加工效率和精度达到较优。
苏州优质树脂砂轮加工
结合剂起粘结磨料的作用:常用的是陶瓷结合剂,其次是树脂结合剂。结合剂选料不同,影响砂轮的耐蚀性、强度、耐热性和韧性等。磨粒粘结愈牢,就愈不容易从砂轮上掉下来,就称砂轮的硬度,即砂轮的硬度是指砂轮表面的磨粒在外力作用下脱落的难易程度。容易脱落称为软,反之称为硬。砂轮的硬度与磨料的硬度是两个不同的概念。被磨削工件的表面较软,磨粒的刃口(棱角)就不易磨损,这样磨粒使用的时间可以长些,也就是说可选粘接牢固些的砂轮(硬度较高的砂轮)。反之,硬度低的砂轮适合磨削硬度高的工件。砂轮在高速条件下工作,为了保证安全,在安装前应进行检查,不应有裂纹等缺陷;为了使砂轮工作平稳,使用前应进行动平衡试验。 砂轮工作一定时间后,其表面空隙会被磨屑堵塞,磨料的锐角会磨钝,原有的几何形状会失真。因此必须修整以恢复切削能力和正确的几何形状。
苏州优质树脂砂轮加工
的回转方式说明 金刚石修整滚轮主要分为三种回转方式,一是连动型,二是制动型,三是驱动型,在这三种回转方式中,制动型和连动型加工面容易出现粗糙或者波纹,而且操作条件设定也非常的困难,所以在现在加工方式中,客户主要采用的是驱动型,这样可以考虑修整机构及考虑磨削性能,金刚石修整滚轮修整出来的砂轮工件精度和设定参数都是在使用过程中一种较好的回转方式。 由于阳极面积远小于阴极面积, 在加厚及增厚镀层时, 阳极易于钝化和被阳极泥渣覆盖。因此, 应准备一副备用阳极, 以便及时更换并清洗活化在用阳极。 上砂时应用一细棒在靠近阴模型上捣实金刚石, 以使金刚石与各点都能紧密接触, 使内型腔上的金刚石分布均匀, 不出现空白点。此外在上砂过程中还要用细棒搅动金刚石, 使滞留在里边的氢气泡及时排出。 电镀修整滚轮增厚镀层时, 应尽可能用高的电流密度, 以节约制造时间; 在到达快结束前1~ 2h, 让电流密度更大些,以使镀层表面粗糙, 这样能增强浇铸低熔合金与镀层的结合牢度。
苏州优质树脂砂轮加工
电气设计的方法:由于空气的绝缘强度较高,故气中放电不同于一般的液中放电,试验研究发现,在气中放电的两极需瞬间接触才能产生放电,而由于金刚石磨轮试验中作为电极一极的工件圆定于机床称之为固定电极,而另一极则定在机床工作台上可随工作台移动称之为活动电极,所示,若活动电极与固定电极的接触完全由机床工作台控制,则由于活动电极至固定电极的距离未知,导致机床工作台的进给量未知,故只能靠肉眼观察两极是否接触,若未接触则继续进给活动电极,这样给加工带来了诸多负面影响,例如活动电极很容易由于气机床工作台的过冲而顶死工件、两极接触引弧产生放电后,活动电极不能即时回退至较佳放电间隙处,可能出现由于极间温度过高而出现的两极胶着现象,由丁于两极的接触与分开靠机床工作台进给与回退保证,一方面无法实现两极快速接触,引弧后快速回退至较佳放电间隙处的要求,另一方面机床工作台亦无法根据两极间放电状态自动进给或回退。由于采用机床工作台控制活动电极的诸多不利因素,考虑到机床控制土作台进给不确定微小位移量的不便,采取了在活动电极接触工件表而后即由步进电机驱动其回退至设定位置,之后改由压电陶瓷进行微位移补偿的方案。