文章发布
网站首页 > 文章发布 > 连云港品牌树脂砂轮用途

连云港品牌树脂砂轮用途

发布时间:2024-07-06 00:50:16
连云港品牌树脂砂轮用途

连云港品牌树脂砂轮用途

电气设计的方法:由于空气的绝缘强度较高,故气中放电不同于一般的液中放电,试验研究发现,在气中放电的两极需瞬间接触才能产生放电,而由于金刚石磨轮试验中作为电极一极的工件圆定于机床称之为固定电极,而另一极则定在机床工作台上可随工作台移动称之为活动电极,所示,若活动电极与固定电极的接触完全由机床工作台控制,则由于活动电极至固定电极的距离未知,导致机床工作台的进给量未知,故只能靠肉眼观察两极是否接触,若未接触则继续进给活动电极,这样给加工带来了诸多负面影响,例如活动电极很容易由于气机床工作台的过冲而顶死工件、两极接触引弧产生放电后,活动电极不能即时回退至较佳放电间隙处,可能出现由于极间温度过高而出现的两极胶着现象,由丁于两极的接触与分开靠机床工作台进给与回退保证,一方面无法实现两极快速接触,引弧后快速回退至较佳放电间隙处的要求,另一方面机床工作台亦无法根据两极间放电状态自动进给或回退。由于采用机床工作台控制活动电极的诸多不利因素,考虑到机床控制土作台进给不确定微小位移量的不便,采取了在活动电极接触工件表而后即由步进电机驱动其回退至设定位置,之后改由压电陶瓷进行微位移补偿的方案。

连云港品牌树脂砂轮用途

连云港品牌树脂砂轮用途

一般来说,要求功效高、表面粗糙度值较大、 金刚石切割片磨片与工件接触面大或磨片对工件斜面磨削、工件材料韧性大和伸长率较大以及加工薄壁工件时,应选择大一些的粒度;反之,加工高硬度、脆性大、组织紧密的材料;精磨、成形磨光或高速磨削时,则应选择较小的粒度。常用的粒度是46-80.粗磨时选用粗粒度磨片,精磨时选用细粒度磨片,另外,端磨应比周磨的磨片粒度粗;内圆磨应比外圆磨的磨片粒度粗;干磨应比湿磨的砂轮粒度粗。切割片磨片硬度选择的一般原则是:磨削硬材料,应选用软磨片,以使其保持较好的“自锐性”,提高磨光片的使用寿命,减少磨削力和磨削热;磨削软材料时,应选用硬砂轮,可再较长时间保持磨粒微刃的锋利,利于切削。具体情况如下;1、磨削韧性大得有色金属工件、刃磨硬度高的刀具、磨削薄壁件及已堵塞磨光片的材料时,应选用较软的磨片;镜面磨削应选择超软磨片; 2、工件材料相同,纵向磨削与切入磨削,周边磨削与端面磨削,外圆磨削与内圆、平面磨削,湿磨于干磨,精磨于粗磨,断续表面磨削与连续表面磨削等,前者均要选用比后者叫硬的磨片。3、高速、高精密磨削、钢胚荒磨、工件去毛刺等,应选择较硬的磨片。

连云港品牌树脂砂轮用途

连云港品牌树脂砂轮用途

控制技术的说明 金刚石砂轮由于其良好的磨削性能,广泛应用于各种高性能,硬脆材料的精密和超精密磨削加工中,但是由于金刚石砂轮自锐性差、容易堵塞、在磨削加工中易产生由砂轮偏心引起的激振力,因而影响磨削过程的稳定性和工件磨削表面质量,从而限制了金刚石砂轮的正常使用,为此必须进行经常修整。然而传统的机械修整方法存在修整时间长、难度大、效率低、精度不高等缺点。因此开发高效率、高精度的金刚石砂轮修整技术成为实现硬脆材料精密和超精密磨削、高速高效磨削、成形磨削、磨削自动化的关键技术。 压电陶瓷微位移驱动原理为基础,对精密驱动技术在气中连续放电辅助加工控制系统中的应用进行了研究。设计了一个包括单片机、压电陶瓷驱动电源、信号检测及处理电路以及步进电机驱动模块组成的气中连续放电辅助加工控制系统。 针对辅助修整的特殊要求,设计了相应的辅助加工用直流电源。实验的结果表明,该电源可为修整金属基金刚石砂轮和树脂基金刚石砂轮提供相应的加工电压及电流,基本上能满足加工要求。 金刚石砂轮气中放电辅助加工用控制系统实验的结果表明,该系统能根据加工时两电极间电压的变化自动寻找较佳放电间隙,并维持辅助加工中的连续放电,可应用于一些高硬度、难切削材料的辅助加工领域。

连云港品牌树脂砂轮用途

连云港品牌树脂砂轮用途

材料工件的高切割效率:1、金刚石砂轮树脂切割片是以树脂为结合剂,结合多种材质,对合金钢﹑不锈钢等难切割材料,切割性能尤为显著。干式﹑湿式两种切割方式,使切割精度更稳定,同时,切割片的材质和硬度的选择,能大大提高您的切割效率,节省您的生产成本。2、金刚石切割片是一种切割工具,广泛应用于石材,混凝土,预制板,新老马路,陶瓷等硬脆材料的加工.金刚石切割片主要由两部分组成;基体与刀头.基体是粘结刀头的主要支撑部分,而刀头则是在使用过程中起切割的部分,刀头会在使用中而不断地消耗掉,而基体则不会,刀头之所以能起切割的作用是因为其中含有金刚石,金刚石作为目前较硬的物质,它在刀头中摩擦切割被加工对象.而金刚石颗[1]粒则由金属包裹在刀头内部。

连云港品牌树脂砂轮用途

连云港品牌树脂砂轮用途

化学性能的相关说明:树脂砂轮随着电子、机械、光学等行业的快速发展,对于单晶硅、不锈钢、硬质合金等硬脆材料的加工表面质量及加工效率提出了越来越高的要求。这些硬脆材料一般均由研、磨、抛加工完成,其中可实现高效率、超光滑表面加工的ELID超精密磨削方法受到了科研与企业界的广泛重视。目前ELID技术主要采用金属结合剂砂轮,但这种砂轮存在制作困难,成本昂贵,并且对于功能材料的洁净表面加工容易造成污染等诸多问题。针对这些问题,提出一种以炭、树脂为结合剂的陶瓷砂轮,这种砂轮具有制作简单、成本低,并且可以实现无污染、高效、高精度的镜面磨削加工。探讨树脂砂轮的ELID磨削加工机理、以及针对陶瓷砂轮的ELID磨削,研究新型的ELID磨削液,使磨削加工达到较优的效果是本文研究的重点。的电化学性能,可以得出结论:陶瓷砂轮具有良好的导电性能,并且通过电解作用后在表面产生一层钝化膜,为ELID技术的实现打下基础。磨削液作为磨削加工中的关键因素,从其防锈性能、冷却性能、润滑性能以及电解性能各方面综合分析,得出一种配方配比,能够很好的应用到ELID磨削加工中。磨削液的导电性在很大程度上决定着钝化膜的形成,采用BP神经网络和MATLAB联合仿真,建立磨削液导电率的预测模型,可以实现不同的磨削条件。采用研制的新型ELID磨削液进行了对不锈钢的磨削实验,通过对比实验结果,分别得到对于不锈钢粗加工和精加工的加工工艺,使加工效率和精度达到较优。