嘉兴优质陶瓷金刚石砂轮加工
发布时间:2023-06-05 00:57:51嘉兴优质陶瓷金刚石砂轮加工
的结构优势:金刚石砂轮砂轮是磨削加工中较主要的一类磨具。砂轮是在磨料中加入结合剂,经压坯、干燥和焙烧而制成的多孔体。由于磨料、结合剂及制造工艺不同,砂轮的特性差别很大,因此对磨削的加工质量、生产率和经济性有着重要影响。砂轮的特性主要是由磨料、粒度、结合剂、硬度、组织、形状和尺寸等因素决定。按所用磨料可分为普通磨料(刚玉和碳化硅等)砂轮和天然磨料超硬磨料和(金刚石和立方砂轮 氮化硼等)砂轮;按形状可分为平形砂轮、斜边砂轮、筒形砂轮、杯形砂轮、碟形砂轮等;按结合剂可分为陶瓷砂轮、树脂砂轮、橡胶砂轮、金属砂轮等。砂轮的特性参数主要有磨料、粘度、硬度、结合剂、形状、尺寸等。金刚石砂轮由于砂轮通常在高速下工作,因而使用前应进行回转试验(保证砂轮在较高工作转速下,不会破裂)和静平衡试验(防止工作时引起机床振动)。砂轮在工作一段时间后,应进行修整以恢复磨削性能和正确的几何形状。
嘉兴优质陶瓷金刚石砂轮加工
制品配料的计算方法:树脂超硬材料磨具的强度、硬度与结合剂用量多少有一定关系,但增加数质量对提高磨具强度、硬度、耐磨性是很有限的,而且还影响耐热性,故一般不超过60%的体积比,多在40-50%之间,且粗粒磨料用的数质量少些、细粒用量要多谢;磨料浓度高时用量少些、浓度低时用量多些。除石墨、mos2等减磨材料外,增加填料用量更能明显提高磨具的强度、硬度、和耐磨性、耐热性,以增强性能强弱,依次为二硫化钼、石墨为减磨材料,不能骑提高磨具强度、耐磨性作用,加入量一般不大;其他填料总量多在40%体积比左右。粗磨、湿磨及有较高耐用度要求的磨具,可使用sic或al2o3,sio3,cr2o3,zno,co,cu类填料;一般磨具可用cr2o3,zno,cu填料;超精磨、抛光磨较好不要用耐磨性填料,宜选用ca,caco3,ceo类填料。优势同时也加湿磨或者mos2,旺旺气孔率也设计的高些。湿润剂的加入量多按100cm3磨料层或过度层体积加2-50克。或者cbn磨具配方的表示方式是按磨料层或者过渡层为100cm3体积,各种原材料应战的体积、气孔体积即是配方,二者之和为100cm3,湿润剂不计体积;同时据各种原材料的密度算出相应重量;在包括湿润剂重量的情况下算出成型密度。具体表示用斜杠区分出体积及相应重量(左边为体积,右边为重量)。
嘉兴优质陶瓷金刚石砂轮加工
结合剂起粘结磨料的作用:常用的是陶瓷结合剂,其次是树脂结合剂。结合剂选料不同,影响砂轮的耐蚀性、强度、耐热性和韧性等。磨粒粘结愈牢,就愈不容易从砂轮上掉下来,就称砂轮的硬度,即砂轮的硬度是指砂轮表面的磨粒在外力作用下脱落的难易程度。容易脱落称为软,反之称为硬。砂轮的硬度与磨料的硬度是两个不同的概念。被磨削工件的表面较软,磨粒的刃口(棱角)就不易磨损,这样磨粒使用的时间可以长些,也就是说可选粘接牢固些的砂轮(硬度较高的砂轮)。反之,硬度低的砂轮适合磨削硬度高的工件。砂轮在高速条件下工作,为了保证安全,在安装前应进行检查,不应有裂纹等缺陷;为了使砂轮工作平稳,使用前应进行动平衡试验。 砂轮工作一定时间后,其表面空隙会被磨屑堵塞,磨料的锐角会磨钝,原有的几何形状会失真。因此必须修整以恢复切削能力和正确的几何形状。
嘉兴优质陶瓷金刚石砂轮加工
化学性能的相关说明:树脂砂轮随着电子、机械、光学等行业的快速发展,对于单晶硅、不锈钢、硬质合金等硬脆材料的加工表面质量及加工效率提出了越来越高的要求。这些硬脆材料一般均由研、磨、抛加工完成,其中可实现高效率、超光滑表面加工的ELID超精密磨削方法受到了科研与企业界的广泛重视。目前ELID技术主要采用金属结合剂砂轮,但这种砂轮存在制作困难,成本昂贵,并且对于功能材料的洁净表面加工容易造成污染等诸多问题。针对这些问题,提出一种以炭、树脂为结合剂的陶瓷砂轮,这种砂轮具有制作简单、成本低,并且可以实现无污染、高效、高精度的镜面磨削加工。探讨树脂砂轮的ELID磨削加工机理、以及针对陶瓷砂轮的ELID磨削,研究新型的ELID磨削液,使磨削加工达到较优的效果是本文研究的重点。的电化学性能,可以得出结论:陶瓷砂轮具有良好的导电性能,并且通过电解作用后在表面产生一层钝化膜,为ELID技术的实现打下基础。磨削液作为磨削加工中的关键因素,从其防锈性能、冷却性能、润滑性能以及电解性能各方面综合分析,得出一种配方配比,能够很好的应用到ELID磨削加工中。磨削液的导电性在很大程度上决定着钝化膜的形成,采用BP神经网络和MATLAB联合仿真,建立磨削液导电率的预测模型,可以实现不同的磨削条件。采用研制的新型ELID磨削液进行了对不锈钢的磨削实验,通过对比实验结果,分别得到对于不锈钢粗加工和精加工的加工工艺,使加工效率和精度达到较优。
嘉兴优质陶瓷金刚石砂轮加工
控制技术的说明 金刚石砂轮由于其良好的磨削性能,广泛应用于各种高性能,硬脆材料的精密和超精密磨削加工中,但是由于金刚石砂轮自锐性差、容易堵塞、在磨削加工中易产生由砂轮偏心引起的激振力,因而影响磨削过程的稳定性和工件磨削表面质量,从而限制了金刚石砂轮的正常使用,为此必须进行经常修整。然而传统的机械修整方法存在修整时间长、难度大、效率低、精度不高等缺点。因此开发高效率、高精度的金刚石砂轮修整技术成为实现硬脆材料精密和超精密磨削、高速高效磨削、成形磨削、磨削自动化的关键技术。 压电陶瓷微位移驱动原理为基础,对精密驱动技术在气中连续放电辅助加工控制系统中的应用进行了研究。设计了一个包括单片机、压电陶瓷驱动电源、信号检测及处理电路以及步进电机驱动模块组成的气中连续放电辅助加工控制系统。 针对辅助修整的特殊要求,设计了相应的辅助加工用直流电源。实验的结果表明,该电源可为修整金属基金刚石砂轮和树脂基金刚石砂轮提供相应的加工电压及电流,基本上能满足加工要求。 金刚石砂轮气中放电辅助加工用控制系统实验的结果表明,该系统能根据加工时两电极间电压的变化自动寻找较佳放电间隙,并维持辅助加工中的连续放电,可应用于一些高硬度、难切削材料的辅助加工领域。